Revolving-Field Polygon Technique for Performance Prediction of Single-Phase Induction Motors
نویسنده
چکیده
This paper presents a new analytical technique for improving the performance prediction of single-phase induction motors, especially capacitor motors. The technique uses the split-phase motor electrical equivalent circuit analysis together with electrical and magnetic parameters whose variation is computed from the equivalent balanced polyphase motor, so that the same magnetic circuit analysis can be used for both. (The term split-phase is used to cover motors operating from a single-phase supply but with the phase windings split into two orthogonal windings, one of which may have a capacitor in series with it during running or starting.) The technique accounts for the elliptical envelope of the magnetizing field vector and results in improved precision, since the three-phase electromagnetic model is considered to be more precise than the normal split-phase motor analysis. An important result is the computation of vector polygons of flux density for each section of the magnetic circuit, providing a better basis for core loss prediction. The double-frequency torque ripple is also obtained from the stator magnetomotive force and flux-density polygons. Three different electrical equivalent circuit methods for the split-phase motor (based respectively on the cross-field theory, forwardand backward-revolving fields, and symmetrical components) are evaluated to determine the method best suited for incorporating the variation of the circuit parameters from the polyphase magnetic circuit analysis, and it is discussed how the core losses can be included in these circuits to obtain the best overall performance prediction.
منابع مشابه
Improvement of Electromagnetic Forces in a Single-Phase Induction Motor by Providing a New Winding Distribution
Single-phase induction motors have a wide range of domestic and industrial applications. These motors have a squirrel cage rotor and their stator usually has two windings: main and auxiliary. The use of auxiliary winding in the structure of single-phase induction motors creates two unbalance and asymmetric phases. This causes to increase the spatial harmonics of the field in the air gap, and al...
متن کاملAnalysis of Shaded Pole Induction Motors Considering Asymmetrical Flux Distribution and Saturation Effects
Several methods are available for performance prediction of single phase shaded pole induction motors. A simple model, in conjunction with a more complicated and accurate model, which considers the asymmetrical windings and core loss, is used to compare the prediction methods against experimental results. Saturation is incorporated in the model. Fundamental and harmonic flux density wave distri...
متن کاملComputer Aided Design for Single-Phase Induction Motors Based on a New Gemoetrical Approach
Design of electrical motors normally involves two main stages: i) Preparation of the main dimensions and parameters. ii) Prediction of the performance. At the first stage the main dimensions of the motor, core stack Lfe and stator outer diameter Do, must be chosen. A set of performance conditions such as breakdown torque, desired output and other important parameters must satisfy the internatio...
متن کاملUsing an Appropriate Controller for Independent Current Control for Motoring of Force Windings of Bearing less Induction Motor
A bearingless induction machine has combined characteristics of induction motor and magnetic bearings. Therefore, the advantages are small size and low-cost. In the magnetic suspension of the bearingless motors, suspension forces are generated based on the feedback signals of displacement sensors detecting the movement of the rotor shaft. The suspension forces are generated taking an advantage ...
متن کاملAn Exact Model for Rotor Field-Oriented Control of Single-Phase Induction Motors
This work presents a new Rotor Field-Oriented Control (RFOC) technique for single-phase Induction Motors (IMs). The proposed method uses two rotational transformations, which extract from the steady-state equivalent circuit of single-phase IM. It is proved by using proposed rotational transformations, the single-phase IM asymmetrical equations change into symmetrical equations. In the proposed ...
متن کامل